
5. Ideals of rings of integers.

This section deals with properties of ideals of rings of integers of number fields. We
introduce the zeta function of a number field.

Proposition 5.1. Let F be a number field and let I, J be non-zero ideals of its ring of
integers OF . Then

N(IJ) = N(I)N(J).

Proof. By Theorem 4.6 it suffices to prove that

N(Ip) = N(I)N(p).

for a non-zero prime ideal p of OF . From the exact sequence

0 −→ I/Ip −→ OF /Ip −→ OF /I −→ 0

we deduce that all we have to show, is that #(I/Ip) = #(OF /p). The group I/Ip is a
vector space over the field k = OF /p. Theorem 4.6 implies pI 6= I. Therefore I/Ip is a
non-zero vector space. Let W be a k-linear subspace of I/Ip. The inverse image of W in
OF is an ideal J satisfying Ip ⊂ J ⊂ I. By Theorem 4.6 we must have either J = Ip or
J = I and hence W = 0 or W = I/Ip. So, apparently the vector space I/Ip has only
trivial subspaces. It follows that its dimension is one. This proves the proposition.

We extend the norm to fractional ideals by defining a group homomorphism N :
IdF −→ Q∗>0 as follows. Let I be a fractional ideal and let α ∈ F ∗ an element for which
αI is an ideal of OF . Then we put N(I) = N(J)/|N(α)|. It follows from Prop. 5.1 that
the norm is well defined and satisfies N(II ′) = N(I)N(I) for any two fractional ideals I,
I ′ of F .

The next proposition is a very useful application of the multiplicativity of the norm
map.

Proposition 5.2. Let F be a number field of degree n.
(a) For every ideal p of OF there exists a prime number p such that p divides p. The

norm of p is a power of p.
(b) Let pe11 · . . . · p

eg
g be the prime decomposition of the ideal generated by p in OF . Then

g∑
i=1

eifi = n

where for every i the number fi is defined by N(pi) = pfi .
(c) For every prime number p there are at most n distinct prime ideals of OF dividing p.
(d) There are only finitely many ideals with bounded norm.

Proof. (a) Let p be a prime ideal. By Prop. 3.9 there exists an integer m 6= 0 in p. Since
p is a prime ideal, it follows that p contains a prime number p. This implies that OF /p is
a finite field of characteristic p. Therefore N(p) is a power of p.

1



(b) This follows at once from the multiplicativity of the norm, by taking the norm of the
prime decomposition of (p) in OF .
(c) This is immediate from (b).
(d) This follows from Theorem 4.6 and (c).

The numbers fi and ei are called the inertia and ramification index respectively, of the
prime ideal pi. If for a prime p and a number field F of degree n one has that ei = fi = 1
for all g primes pi that divide p we say that p is totally split in F . In this case there are n
different prime ideals dividing p. They all have norm p. If g = 1, there is only one prime
ideal p1 dividing p. If, in this case f1 = 1, we say that p is totally ramified in F over Q.
If, on the other hand, e1 = 1, the prime p is inert. That means that it “remains” prime,
in the sense that (p) is also a prime ideal in OF .

Example 5.3. Let F = Q(
√
−5). By Prop. 3.3 the ring of integers of F is equal to Z[

√
−5].

We factor some small prime numbers into prime ideals. The prime ideals p ofOF that divide
a prime p are precisely the ones that contain p. They are in one to one correspondence
with the prime ideals of the quotient ring OF /(p). Indeed, the map that sends p to its
image in OF /(p) is a bijection.

First we study the prime 2. We have

OF /(2) = Z[
√
−5]/(2) = Z[T ]/(2, T 2 + 5) ∼= F2[T ]/(T 2 + 1).

The prime ideals of the ring F2[T ]/(T 2 + 1) are in one to one correspoendence with the
monic irreducible divisors of T 2 + 1 in the principal ideal domain F2[T ]. Since we have
T 2 + 1 = (T + 1)2 in F2[T ], there is only one irreducible divisor and hence only one prime
ideal. The divisor is T + 1 and the corresponding prime ideal in OF is computed by
unraveling the various ring isomorphisms. Since the variable T is mapped to

√
−5 ∈ OF ,

the prime ideal is p2 = (2,
√
−5). The equality p22 = (2) is easily checked. This is the

decomposition of (2). The prime number 2 is ramified in F .
Next consider the ideal (3) in OF . We have

OF /(3) = Z[
√
−5]/(3) = Z[T ]/(3, T 2 + 5) ∼= F3[T ]/(T 2 − 1).

Since the polynomial T 2−1 factors as (T1)(T +1) in F3[T ], there are precisely two distinct
irreducible divisors of T 2− 1. The divisors are T + 1 and T − 1. The corresponding prime
ideals in OF are p3 = (3,

√
−5 + 1) and p′3 = (3,

√
−5 − 1). The equality p3p

′
3 = (3) is

easily checked. This is the decomposition of (3). The prime number 3 splits in F .
One checks that 7 decomposes in a way similar to 3. The prime number 11 remains

prime since OF /(11) ∼= F11[T ]/(T 2 + 5) is a field of 112 elements. The decomposition of
the prime numbers ≤ 11 is given in the following table:

Table 5.4.

p (p)

2 p22 p2 = (2, 1 +
√
−5)

3 p3p
′
3 p3 = (3, 1 +

√
−5) and p′3 = (3, 1−

√
−5)

5 p25 p5 = (
√
−5)

7 p7p
′
7 p7 = (7, 3 +

√
−5) and p′7 = (7,−3 +

√
−5)

11 (11) 11 is inert.
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The number 6 has in the ring Z[
√
−5] two distinct factorizations into irreducible elements:

6 = 2 · 3,
= (1 +

√
−5)(1−

√
−5).

The factors 2, 3 and 1±
√
−5 are all irreducible. Indeed, have norms 4, 9 or 6 respectively.

Proper divisors a + b
√
−5 with a, b ∈ Z would necessarily have norms 2 or 3. But this

is impossible because the Diophantine equations a2 + 5b2 = 2 and a2 + 5b2 = 3 clearly
do not have any solutions a, b ∈ Z. There exists, however, a unique factorization of the
ideal (6) into a product of prime ideals. These prime factors are non-principal ideals. The
factorization refines the two factorizations above:

(6) = p2p3p
′
3.

Indeed, one has that p2p3 = (1 +
√
−5) and p2p

′
3 = (1−

√
−5).

Finally we will apply Theorem 4.6 and Proposition 5.1 to the ζ-function ζF (s) of a
number field F . First we consider the ζ-function of Riemann:

ζ(s) =

∞∑
n=1

1

ns
for s ∈ C, Re(s) > 1.

This series is absolutely convergent. L. Euler (Swiss mathematician who lived and worked
in Berlin and St. Petersburg 1707–1783) found an expression for ζ(s) in terms of an infinite
product:

ζ(s) =
∏

p prime

(1− 1

ps
)−1 for s ∈ C, Re(s) > 1 .

This implies at once that ζ(s) does not have any zeroes in C with real part larger than 1.
The proof of Euler’s formula is as follows: let s ∈ C with Re(s) > 1. We have the following
converging geometric series.

(1− 1

ps
)−1 = 1 +

1

ps
+

1

p2s
+

1

p3s
+ . . .

Since every positive integer can be written as a product of primes in a unique way, we find
that for every X ∈ R>0 ∏

p≤X

(1− 1

ps
)−1 =

∑
n

1

ns

where n runs over the positive integers that have only prime factors less than X. Therefore
we have

|
∞∑
n=1

1

ns
−
∏
p≤X

(1− 1

ps
)−1| ≤

∑
n>X

1

nRe(s)
.
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Since the series
∑∞
n=1

1
ns converges absolutely, the right hand side tends to 0 as X →∞.

The shows that the Riemann zeta function admits a so-called Euler product.

Definition 5.5. Let F be a number field. The Dedekind ζ-function ζF (s) is given by

ζF (s) =
∑
I 6=0

1

N(I)s

where I runs over the non-zero ideals of OF .

The definition makes sense, because there are only finitely many ideals I of a given norm.
For F = Q the Dedekind ζ-function ζQ(s) is just Riemann’s ζ-function. In the next
proposition we show that ζF (s), like the Riemann zeta function, admits an Euler product.
We use it to prove convergence of the series

∑
I 6=0

1
N(I)s for s ∈ C with Re(s) > 1.

Proposition 5.6. Let F be a number field. Then we have

ζF (s) =
∑
I 6=0

1

N(I)s
=
∏
p

(1− 1

N(p)s
)−1

where I runs over the non-zero ideals of OF and p over the prime ideals of OF . The sum
and the product converge absolutely for s ∈ C with Re(s) > 1.

Proof. Let m be the degree of F and let s ∈ C with Re(s) > 1. By Prop. 5.2(c) there are
at most m prime ideals dividing a fixed prime number p. Therefore

∑
N(p)≤X

| 1

N(p)s
| ≤ m

∑
p≤X

1

pRe(s)
≤ m

∑
n≤X

1

nRe(s)

where p runs over the primes of OF of norm at most X, where p runs over the prime
numbers at most X and where n runs over the integers ≤ X. Since the rightmost sum
converges absolutely, so does the leftmost one. Hence, by Exercise 5.1 the product

∏
p

(1− 1

N(p)s
)−1

converges absolutely. By Theorem 4.6 the ideals I admit a unique factorization as a
product of prime ideals. By Proposition 5.1 the norm is multiplicative. For σ ∈ R>1 this
implies the inequality ∑

N(I)≤X

1

N(I)σ
≤
∏
p

(1− 1

N(p)σ
)−1.

Since the terms 1
N(I)σ are positive, the sum converges. In particular

∑
N(I)>X

1
N(I)σ tends

to zero as X →∞.
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For s ∈ C with Re(s) > 1 we have

|
∑
I 6=0

1

N(I)s
−

∏
N(p)≤X

(1− 1

N(p)s
)−1| = |

∑
I prime to p
if N(p) ≤ X

1

N(I)s
| ≤

∑
N(I)>X

1

N(I)Re(s)
,

which we just saw, tends to zero as X →∞. This concludes the proof.

Corollary 5.7. Let F be a number field. The zeta function of F does not vanish on the
right half plane {s ∈ C : Re(s) > 1}.

Proof. Indeed, the Euler product converges.

Exercises.

5.1 Let ak ∈ C for k = 1, 2, . . .. Show that the series
∑

k
ak converges absolutely if and only if

the product
∏

k
(1 + ak) converges absolutely.

5.2 Show that the ideal I = (2, 2i) ⊂ Z[2i] is not invertible, i.e. show I−1I 6= R. Show also
that N(I2) 6= N(I)2.

5.3 Show that Q∗
>0 and the additive group of the ring Z[T ] are isomorphic as abelian groups.

5.4 Let F be a number field of degree n. Show that for every q ∈ Q∗, the fractional ideal
generated by q has norm qn.

5.5 Let F be a number field and let I be a fractional ideal of F . Show that there is a positive
integer m such that mI is an ideal.

5.6 Let F = Q(
√
−6).

(a) Show that OF is equal to Z[
√
−6].

(b) Show that 6 = 2 · 3 = −
√
−6

2
are two factorizations of 6 into products of irreducible

elements of OF .
(c) Show that p = (2,

√
−6) is a prime ideal of norm 2. Show that p2 = (2).

(d) Show that q = (3,
√
−6) is a prime ideal of norm 3. Show that q2 = (3).

(e) Factor the ideal (6) into a product of prime ideals. Show that
√
−6) is equal to pq.

5.7 Let F = Q(
√
−23).

(a) Show that OF is equal to Z[α] with α2 − α+ 6 = 0.
(b) Show that p = (2, α) is a prime ideal of norm 2.
(c) Show that p is not princiapl, but p3 is.

5.8 Let F = Q(
√

10).
(a) Show that OF is equal to Z[

√
10].

(b) Show that p = (2,
√

10) is a prime ideal of norm 2. Show that p2 = (2).
(c) Show that p is not principal. (Hint. there are no elements in OF with norm ±2)

5.9 (a) Show that the ring of integers of Q(i) is Z[i].
(b) Show that Z[i] is a Euclidean domain and hence a PID.
(c) Factor the prime numbers p into products of prime ideal in Z[i] and show

(2) = (1 + i)2,

(p) = (p), if p ≡ 3 (mod 4);

(p) = (π)(π), if p ≡ 1 (mod 4).
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In the case p ≡ 1 (mod 4) we have π = a+ bi with a, b ∈ Z satisfying a2 + b2 = p.
(d) Show that the zeta function of Q(i) is given by

ζQ(i)(s) =
(

1− 1

2s

)−1 ∏
p≡1 (mod 4)

(
1− 1

ps

)−2 ∏
p≡3 (mod 4)

(
1− 1

p2s

)−1

.

5.10 Let F be a number field. For a non-zero ideal I ⊂ OF we put Φ(I) = #(OF /I)∗.
(a) Show that

∑
I⊂J⊂R

Φ(J) = N(I).
(b) Show that

Φ(I) = N(I)
∏
p

(1−N(p)−1).

Here the product runs over the prime ideals p with I ⊂ p ⊂ R.
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